If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.1x^2+14x-2400=0
a = .1; b = 14; c = -2400;
Δ = b2-4ac
Δ = 142-4·.1·(-2400)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-34}{2*.1}=\frac{-48}{0.2} =-240 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+34}{2*.1}=\frac{20}{0.2} =100 $
| (2x-3)=(2x+1) | | 18.75+18.3r=16.8r | | 3x-10=7(2-x) | | 15p+24=687 | | q+(-10q)=18 | | 3(4v+2)=-3 | | 1/4-4x-7=8x+16 | | 2=-4r+3r | | g+4/2=3 | | 7c+19=-17+4c | | 3p=-2 | | 0=-3(w+16) | | 0=-3(w-+16) | | 12x+19x-2+5=-245 | | 60+90+(4y-2)=180 | | 1=-1-n | | 10=2a-7a | | a+16=3a-30 | | -7(4x+7)-6x=-5(x+4) | | 18x+4=100 | | 18x+44=8x-10 | | b=3b-12 | | 2n+(-13)=11 | | 2(5+2x)=2x+24 | | -11x-20x-3+3=-258 | | 2=10+2(m+3) | | -10=7v-6-4 | | 18y=-12+19y | | -7-8x+9x=-8 | | (7a-2)+(4a-7)=90 | | -5/8+7/8=k | | y+3.9=0.7 |